You may unsubscribe at any time Unsuvscrlbe or you may write to 222 purchase St 250 Rye NY 10580

To unsubscribe please go Here or write to: CLIENT PROMOTER 7557 W SAND LAKE RD # 166 ORLANDO, FL 32819 US
It is a paradox that often the more severe a person's motor impairment, the more challenging it is for them to operate the very assistive machines which might enhance their quality of life. A primary aim of my lab is to address this confound by incorporating robotics autonomy and intelligence into assistive machines---to offload some of the control burden from the user. Robots already synthetically sense, act in and reason about the world, and these technologies can be leveraged to help bridge the gap left by sensory, motor or cognitive impairments in the users of assistive machines. However, here the human-robot team is a very particular one: the robot is physically supporting or attached to the human, replacing or enhancing lost or diminished function. In this case getting the allocation of control between the human and robot right is absolutely essential, and will be critical for the adoption of physically assistive robots within larger society. This talk will overview some of the ongoing projects and studies in my lab, whose research lies at the intersection of artificial intelligence, rehabilitation robotics and machine learning. We are working with a range of hardware platforms, including smart wheelchairs and assistive robotic arms. A distinguishing theme present within many of our projects is that the machine automation is customizable---to a user's unique and changing physical abilities, personal preferences or even financial means.
Listen Live   Subscribe   Share  

posted by Isaac Hobart at 5:26 AM

0 Comments:

Post a Comment

<< Home